BS104 Logika Informatika
(BS104)

Matakuliah ini memberikan pengetahuan dasar logika matematika serta pemodelan fakta ke dalam bentuk logika, bertujuan supaya mahasisa mampu menerapkannya pada bidang keilmuannya serta dapat mengembangkan pola berpikir (reasoning) terhadap masalah dan problem solving secara benar dan sistematis. Materi yang dibahas meliputi konsep argumen, logika silogisme, logika proposisi dan logika kuantifikasi (orde pertama, predikat), aturan-aturan aljabar proposisi, well-formed formula, tabel kebenaran, ekivalensi logis, aturan-aturan quantifier, berbagai uji validitas, implikasi logis, aturan-aturan simplifikasi, aturan-aturan inferensi serta teknik pembuktian formal (formal proofing). Silabus Perkuliahan 1. Arguments: Sound & Unsound. Syllogistic Logic: Well Formed Formula (WFF), English Translations (easy), Validity Tests (Star Test), English Translations (hard). 2. Syllogistic Logic: Deriving Conclusion, Venn Diagrams, Idiomatic Arguments, The Aristotelian View. 3. Propositional Logic: WFF, English Translations, Truth Evaluations, Truth Tables, Truth-assignment Test. 4. Propositional Logic: Propositional Formulas, Compound Proposition, Propositional Algebra. 5. Propositional Logic: Formula Manipulation and Simplification (Techniques and Exercises). 6. Propositional Logic: Inference Rules (S&I-rules), Extended Inferences. 7. Formal Propositional Proofs: Easier Proofs, Easier Refutations, Multiple Assumptions. 8. Formal Propositional Proofs: Harder Proofs, Harder Refutations, Other Proof Methods. 9. Quantificational (First Order, Predicate) Logic: Translations, Predicate Formulas, Logical Equivalence & Substitution. 10. Formal Quantificational Proofs: Proofs and Refutations I (Easy). 11. Formal Quantificational Proofs: Proofs and Refutations II (Hard). Literatur 1. Gensler. H. (2002). Introduction to Logic. New York: Routledge. 2. Nolt, Rohatyn, Varzi. (2000). Schaum’s Outline of Theory and Problems of Logic, 2nd edition. New York: McGraw-Hill. 3. Hurley, P. J., (2012). A Concise Introduction to Logic, 11th edition. Boston: Wadsworth Cengage Learning. 4. Soesianto, Dwijono. (2006). Logika Matematika untuk Ilmu Komputer. Yogyakarta: Penerbit Andi.